
Robustness via  
Cross-Domain Ensembles

Teresa Yeo*, Oğuzhan Fatih Kar*, Amir Zamir

crossdomain-ensembles.epfl.ch



Neural networks are not robust under distribution shifts
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Ensembles

• Core idea: using diversity to de-correlate errors

• Sources of diversity

• Different initialisations1 


• Hyperparameters2

• Network architectures3

• Loss constraints4

1. Lakshminarayanan, et. al. 2017.
2. Wenzel et. al. 2020.
3. Zaidi et. al.  2020.
4. Yang et. al. 2020.
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Our Proposed Method

• Diverse set of cues (middle domains)


• Merging based on uncertainty
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Our Proposed Method
Extracting middle domains

• 2D edges, low-pass filtering, …


• No labels needed
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Our Proposed Method
Learning from middle domains

• Diverse predictions
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Our Proposed Method
Predicting uncertainties

• Output: Laplace distribution parameters


• (mean,sigma)→(prediction,uncertainty)


• Use likelihood loss
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Our Proposed Method
Using uncertainties as weights

• Higher uncertainty → lower weights
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Our Proposed Method
Getting the final prediction
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Our Proposed Method
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Uncertainty Estimates are Overconfident
Calibrating uncertainties via sigma training

• Output: Laplace distribution parameters


• (mean,sigma)→(prediction,uncertainty)


• Training with out-of-distribution data


• ℒsigma training = ℒsigma calibration + ℒmean grounding
Help uncertainties increase


under distorted inputs
Keeps predictions fixed
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Addressing Overconfident Incorrect Predictions

• Before sigma training → overconfident predictions


• Similar for deep ensembles
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Addressing Overconfident Incorrect Predictions

• After sigma training → calibrated uncertainties
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Addressing Overconfident Incorrect Predictions

• Predictions are not updated
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• Before sigma training, deep ensemble: 
Poor correlation with error


• After sigma training: Strong correlation 
with errorSh

ift
 In

te
ns

ity
 2

Sh
ift

 In
te

ns
ity

 5

Deep EnsemblesAfter sigma training
Prediction UncertaintyRGB

Before sigma training
Prediction Uncertainty Prediction Uncertainty

!"#$%&#'()&*%'+,-.#$/%)-/01
15

Addressing Overconfident Incorrect Predictions



Sample Results
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Sample Results
Key Takeaways

• We obtain notable improvements in robustness with our method compared to several 
baselines


• Against non-adversarial shifts (Common Corruptions2) and adversarial (I-FGSM1)


• For several tasks and datasets


• Dense pixel-wise regression (surface normals, reshading, depth) on Taskonomy3, 
Replica4, Habitat5


• Object classification on ImageNet6,7 and CIFAR8

1 Kurakin et. al. 2016.
2 Hendrycks et. al. 2019.
3 Zamir et. al. 2018.
4 Straub et. al. 2019.

5 Savva et. al. 2019.
6 Russakovsky et. al. 2015
7 Shankar et. al. 2019
8 Krizhevsky et. al. 2009 17



Qualitative results 
Under increasing speckle noise
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Qualitative results 
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Qualitative results 
Under increasing speckle noise
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Qualitative results 
Under increasing speckle noise
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Qualitative results 
Under 4 unseen distortions
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Baseline RGB Deep Ensembles Ours 

Qualitative results 
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Video corrupted with increasing shot noise



Baseline RGB Deep Ensembles Ours 

Qualitative results 
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Video corrupted with increasing shot noise



Taskonomy + Common Corruptions

• 11 unseen distortions


• Lower is better
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Taskonomy + Common Corruptions

• Our method consistently outperforms the baselines
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Baseline UNet Deep Ensembles Ours 

Taskonomy + adversarial attacks
Image corrupted with increasing I-FGSM attack
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Taskonomy + adversarial attacks

• Lower is better


• Improved robustness against I-FGSM attacks without adversarial training


• More challenging to fools all paths simultaneously


•
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Ablation studies
Effect of increasing number of paths & Role of uncertainty

• More paths → larger performance gap


• Using uncertainties as merging weights boosts performance
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Ablation studies
Importance of each middle domain

• Order of best performing paths under 
different distortions


• Most important = 8, least important =1


• Low-pass: helpful for Noise distortions


• Sharpened: helpful for Contrast distortion
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Imagenet-C

• Our method outperforms deep ensembles by only using middle domains
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Summary
Key Takeaways

• Using middle domains promotes ensemble diversity with a negligible increase in 
computational cost


• The uncertainty based merging select regions from the best performing path


• We improved robustness compared to several baselines under distribution shifts (common 
corruptions, adversarial attacks) for classification and regression tasks


• Furthermore, improvements in robustness does not sacrifice performance on in-distribution 
data 
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