Robustness via Cross-Domain Ensembles

Teresa Yeo*, Oğuzhan Fatih Kar*, Amir Zamir

crossdomain-ensembles.epfl.ch

EPEL

Neural networks are not robust under distribution shifts

Clean input (Intensity 0)

Distorted (Defocused Blur, Intensity 2)

Prediction

Distorted) (JPEG Compressed, Intensity 2)

Ensembles

- Core idea: using diversity to de-correlate errors
 - Sources of diversity
 - Different initialisations¹
 - Hyperparameters²
 - Network architectures³
 - Loss constraints⁴

- 1. Lakshminarayanan, et. al. 2017.
- 2. Wenzel et. al. 2020.
- 3. Zaidi et. al. 2020.
- 4. Yang et. al. 2020.

Our Proposed Method

- Diverse set of cues (middle domains)
- Merging based on uncertainty

Z	1
	I

Our Proposed Method Extracting middle domains

- 2D edges, low-pass filtering, ... •
- No labels needed lacksquare

 \mathcal{X} Input

Our Proposed Method Learning from middle domains

Diverse predictions

Our Proposed Method Predicting uncertainties

- Output: Laplace distribution parameters
- (mean,sigma)→(prediction,uncertainty)
- Use likelihood loss

Our Proposed Method Using uncertainties as weights

Higher uncertainty → lower weights

Our Proposed Method Getting the final prediction

 \mathcal{X} Input

Our Proposed Method

Uncertainty Estimates are Overconfident Calibrating uncertainties via sigma training

- Output: Laplace distribution parameters
 - (mean, sigma) \rightarrow (prediction, uncertainty)
- Training with out-of-distribution data
- \mathscr{L} sigma training = \mathscr{L} sigma calibration + \mathscr{L} mean grounding Help uncertainties increase under distorted inputs

- Before sigma training \rightarrow overconfident predictions
- Similar for deep ensembles

After sigma training \rightarrow calibrated uncertainties

• Predictions are not updated

- Before sigma trainin Poor correlation with
- After sigma training: with error

15

-

Sample Results

Sample Results Key Takeaways

- We obtain *notable improvements* in robustness with our method compared to several baselines
 - Against non-adversarial shifts (Common Corruptions²) and adversarial (I-FGSM¹)
 - For several *tasks* and *datasets*
 - Replica⁴, Habitat⁵
 - Object classification on ImageNet^{6,7} and CIFAR⁸
- ¹ Kurakin et. al. 2016. ² Hendrycks et. al. 2019. ³ Zamir et. al. 2018. ⁴ Straub et. al. 2019.
- ⁵ Savva et. al. 2019.
- ⁶ Russakovsky et. al. 2015
- ⁷ Shankar et. al. 2019
- ⁸ Krizhevsky et. al. 2009

Dense pixel-wise regression (surface normals, reshading, depth) on Taskonomy³

RGB

Ground Truth

le noise with increasing intensity Speckl

(re)Shading

Baseline

RGB

Ground Truth

Speckle noise with increasing intensity

(re)Shading

Ours

Deep Ensembles

Baseline

RGB

Ground Truth

Speckle noise with increasing intensity

Surface Normals

Deep Ensembles

Baseline

RGB

Ground Truth

with increasing intensity Speckle noise

Shift Intensity က Shift Intensity ß nsity Shift Inter

Qualitative results Under 4 unseen distortions

Impulse Noise Defocus Blur Input image Ours Baseline Deep nsembles Ensem

Qualitative results Video corrupted with increasing shot noise

RGB

Baseline

Deep Ensembles

Ours

Qualitative results Video corrupted with increasing shot noise

RGB

Baseline

Deep Ensembles

Taskonomy + Common Corruptions

- 11 unseen distortions
- Lower is better

0.12

0.10 Jerror 0.08

0.06

Normals

0 1 2 3 4 5 Shift Intensity

Taskonomy + Common Corruptions

• Our method consistently outperforms the baselines

Taskonomy + adversarial attacks Image corrupted with increasing I-FGSM attack

Baseline UNet

Attack strength ε

0

Deep Ensembles

Ours

Taskonomy + adversarial attacks

- Lower is better
- Improved robustness against I-FGSM attacks without adversarial training
- More challenging to fools all paths simultaneously

		No	rmal			Resl	hade	Depth				
<i>ϵ</i> Method	2	4	8	16	2	4	8	16	2	4	8	1
Baseline UNet	8.23	11.53	13.03	14.37	17.92	22.78	27.26	34.40	5.50	6.76	8.36	9
Deep ensembles	7.49	11.13	13.36	15.65	15.66	21.95	27.75	34.98	5.45	6.68	8.27	1
Inv. var. merging	7.60	8.89	10.40	12.77	15.56	16.55	18.93	22.01	4.94	4.99	5.93	6

Ablation studies Effect of increasing number of paths & Role of uncertainty

- More paths \rightarrow larger performance gap
- Using uncertainties as merging weights boosts performance

Ablation studies Importance of each middle domain

- Order of best performing paths under different distortions
- Most important = 8, least important =1
- Low-pass: helpful for Noise distortions
- Sharpened: helpful for Contrast distortion

Imagenet-C

Our method outperforms deep ensembles by only using middle domains •

			Noise			Blur					Wea	ther	Digital			
Method	Clean error	Avg.	Gauss.	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel
Baseline ResNet-50	24.4	76.2	73.0	74.7	78.8	79.9	92.1	81.5	82.5	75.2	75.6	64.0	59.2	65.3	90.6	74.8
Deep ensembles	21.5	70.4	67.4	69.7	72.5	73.4	87.4	76.1	76.9	70.3	70.3	60.1	52.4	61.7	83.8	66.4
Ours	21.6	67.9	66.6	68.6	71.2	71.7	82.1	75.6	77.3	69.1	67.2	59.1	51.3	55.8	82.1	54.4

Summary Key Takeaways

- Using middle domains promotes ensemble diversity with a negligible increase in computational cost
- The uncertainty based merging select regions from the best performing path
- We improved robustness compared to several baselines under distribution shifts (common corruptions, adversarial attacks) for classification and regression tasks
- Furthermore, improvements in robustness does not sacrifice performance on in-distribution data

Robustness via Cross-Domain Ensembles

Teresa Yeo*, Oğuzhan Fatih Kar*, Amir Zamir

crossdomain-ensembles.epfl.ch

EPEL

